设a,b,c为不全相等的实数,x=a^2-bc,y=b^2-ac,z=c^2-ab,证明x,y,z至少有一大于0

首页/题库/173℃/2024-11-14 16:11:22

优质解答:

设a、b、c为不全相等的实数,x=a²-bc,y=b²-ac,z=c²-ab,证明:x、y、z至少有一大于0.

证明:用反证法证明,

假设x、y、z都小于0,那么必有:

x+y+z0

与①相矛盾.故原命题成立.

我来回答修改/报错/举报内容!

猜你喜欢

一个神奇的在线题库网,分享各类考试题库、题目资料与资料答案、在线搜题与练习等!
本网站部分内容、图文来自于网络,如有侵犯您的合法权益,请及时与我们联系,我们将第一时间安排核实及删除!
Copyright © 2021-2024 315题库 All Rights Reserved